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Abstract
Given a two-loop β function for multiple marginal coupling constants, we derive
an asymptotic formula for the running coupling constants driven to an infrared
fixed point. It can play an important role in universal loglog corrections to
physical quantities.

PACS numbers: 05.10.Cc, 64.60.Ak, 64.60.Fr

1. Introduction

Log and loglog corrections to physical quantities in critical phenomena generally appear in
a statistical system at the critical dimension. In the language of renormalization group (RG)
[1], those corrections arise from marginally irrelevant coupling constants in the system. As
the length scale we are looking at becomes larger, the coupling constants effectively change,
obeying an RG equation (RGE), and approach an infrared fixed point if initial values of the
trajectories are on the critical surface. Universality (i.e., a property independent of the initial
values) of the logarithmic corrections is closely related to the long-distance behaviour of the
running coupling constants.

Generally, the log and loglog corrections are obtained respectively from the leading and
the next-to-leading order of the β function specifying the RGE. In order to see this, it is in-
structive to consider the case of a single coupling constant. When the origin is an infrared fixed
point, an RGE of a marginal coupling constant g up to the next-to-leading order is generally
described as

dg

dt
= −ag2 + bg3, a > 0, (1)

where t is related to a length scale L of RG transformation (RGT) by t = ln L. Here we
consider the weak-coupling region between the two fixed points, 0 < g < a/b. It is readily
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integrated and the solution g(t) satisfies

at + C = 1

g(t)
− b

a
ln

[
g(t)

(a

b
− g(t)

)−1
]

(2)

in this region. The constant C is determined from an initial condition. When t → ∞, g(t) has
the following asymptotic form:

g(t) = 1

at
+ b ln t

a3t2
+ O(t−2), (3)

which implies that the first term contributes to a ln L correction, while the second term to a
ln ln L correction. A key feature is that the coefficients of 1/t and ln t/t2 are independent of
C, which leads to universal logarithmic corrections.

Although we can integrate RGE explicitly in the case of a single coupling constant, we
cannot generally perform the same procedure in the case of multiple coupling constants.
Therefore, it is worthwhile to determine an asymptotic form analogous to (3) in the case
of multiple marginal coupling constants, which is the main subject of this paper.

One cannot linearize RGE about a fixed point in the case of marginal coupling constants,
which complicates the problem of finding an asymptotic form without explicit integration. An
algebraic method was found in [2, 3], where the β function is restricted to the lowest order.
Since the lowest-order β function for marginal coupling constants is homogeneous, the RGE is
invariant under a scaling transformation [2]. One can define another RGT to the RGE, thanks
to the scale invariance1. The new RGE generally has a linear term, which allows us to obtain
the asymptotic form without explicit integration.

However, we cannot apply the above method when higher orders of the β function are
taken into account because there are no such scale invariances. Hence we need to find an
alternative method to remedy the problem for linear terms to vanish.

In the next section, we present a change of variables in the RGE that allows us to apply
the linearization. In section 3, we switch from the resultant RGE to an equivalent integral
equation, and outline the existence of a unique solution driven to the fixed point. We also
give an estimation of the solution. Details of the proof are found in appendix A. In section
4, using the estimation found in the preceding section, we show a sufficient condition for
loglog corrections to be universal. A universal asymptotic formula for the solution in the
long-distance limit is also derived under the sufficient condition. In section 5, applying our
result, we rederive the universal asymptotic formula for the running coupling constants in the
classical XY model, as an example. The result is consistent with the original paper of Amit
et al [6]. The final section is devoted to summary and discussion.

2. Changing variables of RGE

We consider an RGE for marginal coupling constants denoted by g(t) = (g1(t), . . . , gn(t)). We
regard the space of the coupling constants as the n-dimensional Euclidean space Rn. Suppose
that we have obtained the RGE up to the next-to-leading order, which is to say we start with
the following RGE

dg(t)

dt
= V (g(t)) + F (g(t)). (4)

1 A general idea of RG, applied as a tool for asymptotic analysis of non-linear differential equations, is developed
in [4, 5].
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The leading and the subleading terms of the β function are described by V and F , respectively.
It is assumed that they possess the following scaling property:

V (kg) = k2V (g), F (kg) = k3F (g). (5)

In general, V and F are obtained as quadratic and cubic polynomials in the coupling constants,
respectively. The β function is defined on the whole space Rn in this case. However, in some
cases, the β function is obtained in a rational form (e.g., see [7]). For this reason, it is suitable
to assume that V and F are defined on some region E in Rn.2

It is a general feature of an RGE of marginal coupling constants that there are no linear
terms, which causes difficulty in deriving an asymptotic formula. We introduce new variables
to bypass this problem. First we replace t by

u ≡ 1

ε
log(εt + 1), (6)

where ε is a parameter with

0 < ε < 1. (7)

As we will see later, ε is introduced to control an effect of the subleading term F . Next we
change g to c, where

g(t) = e−εuc(u). (8)

The left-hand side of (4) becomes

dg(t)

dt
= e−εu d

du
(e−εuc(u)) = e−2εu

(
−εc(u) + dc(u)

du

)
, (9)

while the right-hand side is

V (e−εuc) + F (e−εuc) = e−2εuV (c) + e−3εuF (c) (10)

because of the scaling property (5). In this way, the RGE (4) is written as3

dc(u)

du
= εc(u) + V (c(u)) + e−εuF (c(u)). (11)

Now we extract the linear part from the first two terms. We assume that a non-trivial
solution c∗ ∈ E for

εc∗ + V
(
c∗) = 0 (12)

exists. Note that c∗ is linear in ε. In fact, let us introduce a∗ by

c∗ ≡ εa∗. (13)

Because of the scaling property (5), a∗ is determined by

a∗ + V (a∗) = 0. (14)

2 More precisely, E is an open subset of Rn whose closure contains the origin. We also assume that V and F belong
to C2(E), i.e., their second derivatives exist and are continuous on E.
3 We comment that this transformation is generalized in the case where a β function starts with an mth homogeneous
function (m � 2). In fact, if we define u and c(u) by (m − 1)εu = ln(εt + 1) and g(t) = e−εuc(u), respectively, we
get a similar equation having a linear term.
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Hence a∗ is independent of ε and (13) indicates that c∗ approaches the origin as ε becomes
smaller. Therefore, an effect of the subleading term F in a neighbourhood of c∗ is suppressed
if we take ε sufficiently small. It plays an important role in showing the existence of a solution
for (18) by a contraction map, as we will see in appendix A.

We analyse (11) in a neighbourhood of c∗. Define

b(u) ≡ c(u) − c∗ (15)

and write

V (c(u)) = V (c∗) + DV (c∗)b(u) + v(b(u)), (16)

where DV (c∗) is the derivative of V at c∗, which is represented by the n × n matrix as

DV (c∗)ij = ∂Vi

∂cj

(c∗). (17)

The RGE (11) is written as

db(u)

du
= Mb(u) + H(u, b(u)), (18)

where

M ≡ εIn + DV (c∗), H(u, b(u)) ≡ v(b(u)) + e−εuF (c∗ + b(u)) (19)

with In being the n × n unit matrix. Furthermore, (5) yields4

DV (c∗) = εDV (a∗). (20)

Therefore, M is linear in ε

M = ε(In + DV (a∗)). (21)

To sum up, if we know a solution b(u) for (18), we get a solution for (4) by

g(t) = e−εu(c∗ + b(u)), u = 1

ε
ln(εt + 1). (22)

3. Integral equation

In this section, following [8] (section 2.7), we derive an integral equation satisfied by a solution
b(u) for (18) driven to 0.

We assume that there are no eigenvalues with zero real part in M. Suppose that M has k

eigenvalues having a negative real part, and n − k eigenvalues with positive real part. If the
positive eigenmodes are fine-tuned to vanish, |b(u)| becomes smaller as u → ∞. We find from
(22) that the corresponding g(t) approaches the origin from the c∗-direction. In order to show
the existence of such solutions, we decompose M into a block diagonal form. Namely,

R−1MR =
(

εP 0
0 εQ

)
≡ ε�, (23)

4 To prove (20), we use (5) again.

V (c∗ + h) = V (c∗) + DV (c∗)h + o(|h|),
while the left-hand side is

V (c∗ + h) = ε2V (a∗ + h/ε) = ε2V (a∗) + εDV (a∗)h + o(|h|).
Comparing the linear term in h, we have (20).
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where εP is a k × k matrix whose eigenvalues have a negative real part. Similarly, εQ is an
(n − k) × (n − k) matrix, where its eigenvalues have a positive real part. Note that P , Q and
� are independent of ε because M is linear in ε. Define the tilde operation

x̃ = R−1x, X̃ = R−1 ◦ X ◦ R (24)

for a point x ∈ E and a map X : E → Rn, e.g., F̃ (c̃) = R−1F (Rc̃) = R−1F (c). The RGE
(18) can be written as

db̃(u)

du
= ε�b̃(u) + H̃(u, b̃(u)). (25)

Let

U(u) ≡
(

ePεu 0
0 0

)
, T(u) ≡

(
0 0
0 eQεu

)
. (26)

Then

dU

du
= ε�U(u),

dT

du
= ε�T(u) (27)

and

eε�u = U(u) + T(u). (28)

We focus on a solution that behaves as b̃(u) → 0 as u → ∞. The integral equation
corresponding to it is

b̃(u) = U(u)p +
∫ u

0
du′ U(u − u′)H̃(u′, b̃(u′)) −

∫ ∞

u

du′ T(u − u′)H̃(u′, b̃(u′)), (29)

where p = (p1, . . . , pk, 0, . . . , 0) specifies an initial condition in the following way:

b̃(0)i = pi for i = 1, . . . , k.

b̃(0)i = −
(∫ ∞

0
du′T(−u′)H̃(u′, b̃(u′))

)
i

for i = k + 1, . . . , n.
(30)

We can show that (29) has a unique solution if ε and p are sufficiently small. Moreover,
we find that the solution satisfies

|b̃(u)| � Je−αεu (31)

for some J > 0. Here α is a positive number, such that −α is strictly greater than the real part
of every eigenvalue of P . In order to prove (31), we need to extend the usual proof of the stable
manifold theorem (see [8]), which is applied to the case of an autonomous system, to the case
of the nonautonomous system (18). Details of a proof of (31) are found in appendixA.

4. Universal asymptotic form of b̃(u)

In this section, we derive a universal asymptotic form of b̃(u) by applying (31) to the right-hand
side in (29). (Here, ‘universal’ means that the asymptotic form is independent of p.)

For this purpose, we give a more concrete form of P . Let λl (l = 1, . . . , n−) be the
distinct eigenvalues of P with the multiplicity dl. We denote by Wl the generalized eigenspace
associated with λl. Clearly, dim Wl = dl. Taking an appropriate basis for Rn, P is represented
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as a block diagonal form. Here, the lth block Pl is a dl × dl upper triangle matrix whose
diagonal components take a common value λl. Furthermore, the basis allows us to assume that
Nl ≡ Pl − λlIdl

is a nilpotent matrix, namely Nνl−1 �= 0, Nνl = 0 for some 1 � νl � dl. An
arbitrary element x ∈ Rn can be decomposed as

x =
n−∑
l=1

x(l) + x(+), x(l) ∈ Wl, (32)

where x(+) is an element of the subspace spanned by the positive eigenmodes of M. Applying
U(u) to both sides, we have

U(u)x =
n−∑
l=1

eελlu

νl−1∑
k=0

(εu)kNk
l

k!
x(l), (33)

with the convention N0
l = Idl

even if Nl is the zero matrix.
We can show that5

Mc∗ = −εc∗, (34)

which implies Pc∗ = −c∗. Then we set

λ1 = −1. (35)

Using (33) and (35), we can estimate the right-hand side of (29). The first term is
written as

U(u)p =
n−∑
l=1

G
(l)
1 (u)eλlεu, (36)

where G
(l)
1 (u) is a polynomial of degree at most νl − 1. Since (36) explicitly depends on p,

it is non-universal.
In order to obtain a universal asymptotic form, universal terms should dominate over (36)

when u → ∞. Let us find a condition that such terms appear from the remaining part. The
integral containing U in (29) is divided as∫ u

0
U(u − u′)e−εu′

F̃ (c̃∗) du′ +
∫ u

0
U(u − u′)(H̃(u′, b̃(u′)) − e−εu′

F̃ (c̃∗)) du′. (37)

Applying (33) to F̃ (c̃∗), the first integral is easily calculated. It is important to notice that the
case of l = 1 has to be treated separately, because the factor exp(−ελ1u

′) in U(u−u′) cancels
exp(−εu′) in the integrand. When l = 1 and k = ν1 − 1 in (33), the cancellation brings a
term proportional to uν1 exp(−εu), which is not contained in G

(l)
1 (u). Writing this explicitly,

the integral is expressed as
∫ u

0
U(u − u′)e−εu′

F̃ (c̃∗) du′ = (εu)ν1 e−εu

εν1!
N

ν1−1
1 F̃ (1)(c̃∗) +

n−∑
l=1

eλlεuG
(l)
2 (u). (38)

5 In order to prove (34), note that

V (c∗ + hc∗) = V (c∗) + DV (c∗)hc∗ + o(|h|).
On the other hand, the left-hand side is equal to

(1 + h)2V (c∗) = −ε(1 + h)2c∗

because of (5) and (12). Comparing the linear term in h,we get (34).
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Here, it is straightforward to check that G
(l)
2 (u) is a polynomial whose degree is at most νl −1,

the same order as (36), so that its universal behaviour is obscured by the non-universal nature
of U(u)p. On the other hand, the first term can dominate over (36) in the case when

	λl < −1 (l = 2, . . . , n−). (39)

Moreover, as we see in appendix B, this term is most dominant in the right-hand side of (29)
when (39) holds. Thus, we obtain

b̃(u) = (εu)ν1 e−εu

εν1!
N

ν1−1
1 F̃ (1)(c̃∗) + O(uν1−1e−εu). (40)

Let us revert to the original variables by (22). We get, under the condition (39),

g̃(t) = 1

εt + 1

(
εã∗ + ε3(ln(εt + 1))ν1

ε(εt + 1)ν1!
N

ν1−1
1 F̃ (1)(ã∗

)

)
+ O

(
(ln(εt + 1))ν1−1

(εt + 1)2

)

= ã∗

t
+ (ln t)ν1

t2ν1!
N

ν1−1
1 F̃ (1)(ã∗

) + O

(
(ln t)ν1−1

t2

)
, (41)

as t → ∞. This is the main result of this paper. It is worthwhile noting that the (ln t)ν1 term
appears, which brings about a (ln ln L)ν1 correction in general.

The case of dim W = 1. The simplest case is that dim W1 = 1. In this case, using the unit
eigenvector ẽ∗ ≡ ã∗

/|ã∗| in W1,

F̃ (1)(ã∗
) = (F̃ (ã∗

), ẽ∗
)ẽ∗, N1 = 0, ν1 = 1. (42)

Then the result (41) is simplified to

g(t) = a∗

t
+ ln t

t2
(F̃ (ã∗

), ẽ∗
)Rẽ∗ + O

(
1

t2

)
. (43)

Note that we have removed ‘tilde’ from g̃ and ã∗ by applying R. Now let us write R as a set
of column vectors

R = (v1, . . . , vn). (44)

Similarly, we write R−1 in terms of a set of row vectors

R−1 =




u1

u2

...

un


 . (45)

Since R−1R = In, we have

(vi, uj) = δij. (46)

We know that a∗ is an eigenvector with the eigenvalue −1, so we can take v1 = a∗. In this
case,

ã∗ = R−1a∗ =




1
0
...

0


 = ẽ∗

. (47)
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Therefore

(F̃ (ã∗), ẽ∗) = F̃ 1(ã
∗), (48)

where the right-hand side is the first component of F̃ (ã∗). Using this convention, the asymptotic
behaviour (43) is simplified further to

g(t) = a∗

t
+ ln t

t2
F̃1(ã

∗)a∗ + O

(
1

t2

)
. (49)

5. Application to the two-dimensional XY model

In this section, we illustrate our method using the two-dimensional classical XY model [9].
The beta function up to subleading order of this model and the two-point correlation function
containing loglog correction are originally derived by Amit et al [6]. They obtained the
asymptotic form of the coupling constants by explicitly integrating the RGE. Here, we rederive
the asymptotic form within our formulation.

The two-dimensional classical XY model has the following RGE [6, 10]:

dg1

dt
= −g2

2 − B1g
2
2g1,

dg2

dt
= −g1g2 − A1g

3
2, (50)

where g2 > 0 and 2A1 + B1 = 3/2. Thus

V (g) =
( −g2

2

−g1g2

)
, F (g) =

(−B1g
2
2g1

−A1g
3
2

)
. (51)

Solving (14), we get a non-trivial solution

a∗ =
(

1

1

)
. (52)

Inserting this into (21), one finds

M =
(

1 −2
−1 0

)
ε. (53)

The eigenvalues and corresponding eigenvectors of M are

−1 ↔
(

1

1

)
and 2 ↔

(−2

1

)
. (54)

Namely, the space of negative eigenmodes of M is one-dimensional. It indicates that the
critical surface along a∗ is in fact a line. The transformation matrix R and the diagonalized
matrix � are obtained from the eigenvectors and the eigenvalues, respectively. The result is

R =
(

1 −2
1 1

)
, � =

( −1 0
0 2

)
. (55)

The condition (39) is satisfied and dim W1 = 1 in this example. Furthermore, since we chose
a∗ as the first column in R, (49) is applicable. Using R, we compute

F̃ (ã∗) = R−1F (a∗) = −1

3

(
2A1 + B1

A1 − B1

)
. (56)
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From the first component of the above result, we conclude that

g(t) = a∗

t
− 1

3
(2A1 + B1)

log t

t2
a∗ + O

(
1

t2

)
= a∗

t
− 1

2

log t

t2
a∗ + O

(
1

t2

)
(57)

for the critical line. This is consistent with the original result.

6. Summary and discussion

We have obtained an asymptotic formula for multiple marginally irrelevant coupling constants
in the case where the two-loop beta functions are known. We first change the variables in the
given RGE as (6) and (8). One can extract a linear part M defined in (19) from the resulting
differential equation if there is a real solution c∗ for (12), although the original RGE cannot be
linearized. It is assumed that there are no eigenvalues of M with zero real part in the present
investigation.

Next we have shown that, if we take ε in (8) to be sufficiently small, there is a k dimensional
neighbourhood N of c∗ such that trajectories of the RGE starting in N approach the origin
along c∗, where k is the number of eigenvalues of M with a negative real part. Furthermore,
if the eigenvalues of M with a negative real part satisfy the condition (39), the asymptotic
formula of g(t) becomes universal and is given by (41).

As we have concretely shown by using the two-dimensional classical XY model, the
advantage of this formula is that we do not need to integrate the RGE explicitly.

The non-linearity having the original RGE is changed into solving (12) in our formalism.
All quantities appearing in (41) can be computed using simple linear algebra. Thus, our
approach can be applicable even though the RGE is too complicated to integrate. Application
to such a complicated RGE is a future problem.

Finally, we comment on our previous investigation on this topic. As we mentioned briefly
in section 1, another RGE is derived with respect to the scaling invariance possessed by the
leading-order RGE in [2], where the asymptotic formula in the lowest order is obtained. It is
consistent with the present work. The relationship between the linear part of the new RGE and
M in (19) is clarified in [3]. However, a direct relationship between M and the original RGE
was not clear. In this paper, it is found that M naturally comes out in the RGE by the change
of variables, which makes it possible to derive the asymptotic formula for a β function up to
the subleading order. The previous formulation can also be applied to deriving the correlation-
length exponent of phase transitions in infinite order, which will be extended to the case of the
higher-order β function.
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Appendix A. Existence of the solution for (29)

The purpose of this appendix is to show the existence of a unique solution for the integral
equation (29) and derive the estimation (31). To this end, we need estimations of H̃ , U and T .
Throughout this appendix, we omit ‘tilde’ for brevity (e.g., we write b or H instead of b̃ or H̃ ,
respectively).
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Appendix A.1. Lipschitz-type condition for v and f

We first derive a Lipschitz-type condition for v and f defined through the following equation:

V (c∗ + b) = V (c∗) + DV (c∗)b + v(b), (A.1)

F (c∗ + b) = F (a∗) + DF (a∗)b + f (b), (A.2)

which is employed for the estimation of H . Let

Nη ≡ {b; b ∈ Rn, |b| < η}. (A.3)

First we prove that, for any ξ1, ξ2 > 0, there exists a number η > 0 such that

|v(b1) − v(b2)| < ξ1ε|b1 − b2|, (A.4)

|f (b1) − f (b2)| < ξ2ε|b1 − b2| (A.5)

for b1, b2 ∈ Nεη and 0 < ε < 1.

Proof. We define v0 by the following equation:

V (a∗ + b′) = V (a∗) + DV (a∗)b′ + v0(b
′). (A.6)

For b′
1, b′

2, let s ≡ b′
2 − b′

1 and define

Y(θ) ≡ v0(b
′
1 + θs). (A.7)

Note that Y(0) = v0(b
′
1) and Y(1) = v0(b

′
2). Taking the derivative with respect to θ, we have

dY(θ)

dθ
= Dv0(b

′
1 + θs)s. (A.8)

Integrating from 0 to 1, we get

|v0(b
′
1) − v0(b

′
2)| = |Y(1) − Y(0)| �

∫ 1

0
dθ|Dv0(b

′
1 + θs)||s|. (A.9)

Since Dv0 is continuous and Dv0(0) = 0, for every ξ1 > 0 there exists a number η > 0 such
that x ∈ Nη implies |Dv0(x)| < ξ1. For b′

1, b′
2 ∈ Nη, since b′

1 + θs ∈ Nη, (A.9) leads to

|v0(b
′
1) − v0(b

′
2)| < ξ1|b′

1 − b′
2|. (A.10)

Next we consider estimation in a neighbourhood of c∗. Putting b = εb′ and using the
scaling property of V , we have

V (c∗ + b) = ε2V (a∗ + b′) = ε2(V (a∗) + DV (a∗)b′ + v0(b
′)). (A.11)

Comparing (A.1) and (A.11), we have

v(εb′) = ε2v0(b
′), (A.12)
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which leads to

|v(b1) − v(b2)| = ε2|v0(b
′
1) − v0(b

′
2)| < ε2ξ1|b′

1 − b′
2| = εξ1|b1 − b2|, (A.13)

for b1, b2 ∈ Nεη. Repeating a similar argument for f , we get

|f (b1) − f (b2)| < ε2ξ2|b1 − b2|, (A.14)

which implies (A.5) because 0 < ε < 1.

Appendix A.2. Lipschitz-type condition for H(u, b)

Using (A.4) and (A.5), we readily obtain a Lipschitz-type condition for H in the following
form: for any ξ > 0, there exists η > 0 such that

|H(u, b1) − H(u, b2)| < (ξε + wε2)|b1 − b2| (A.15)

for all b1, b2 ∈ Nεη and 0 < ε < 1. Here,

w ≡ |DF (a∗)|. (A.16)

Proof. Recall

H(u, b) = v(b) + e−εuF (c∗ + b). (A.17)

Then

|H(u, b1) − H(u, b2)| � |v(b1) − v(b2)| + e−εu|DF (c∗)(b1 − b2)| + e−εu|f (b1) − f (b2)|
� |v(b1) − v(b2)| + ε2w|b1 − b2| + |f (b1) − f (b2)|, (A.18)

where we have used

|DF (c∗)| = ε2w. (A.19)

Using (A.4) and (A.5) for ξ1 = ξ2 = ξ/2, we get (A.15).

Corollary. If (A.15) holds, then

|H(u, b1)| < (ξε + ε2w)|b1| + e−αεuε3|F (a∗)|, (A.20)

where 0 < α < 1.

Proof. Setting b2 ≡ 0 in (A.15), we immediately get

|H(u, b1) − e−εuF (c∗)| < (ξε + ε2w)|b1|, (A.21)

which implies (A.20).
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Appendix A.3. Estimation of U and T

Following [8] (section 2.7), we derive that there are positive constants α, σ and K, such that

|T(u)| < Keσεu (for u � 0)

|U(u)| < Ke−(α+σ)εu (for u � 0),
(A.22)

where 0 < α < 1.

Proof. Let µj (j = 1, . . . , n+) be distinct eigenvalues of Q. Here 	µj > 0 for all j. We can
choose a sufficiently small σ and sufficiently a large K such that

	µj > σ > 0 for all j = 1, . . . , n+,

|T(u)| < Keσεu for all u � 0.
(A.23)

Similarly, let λl (l = 1, . . . , n−) be distinct eigenvalues of P . We take positive α′ satisfying

	λl < −α′ < 0 (A.24)

for all l = 1, . . . , n−. Then there exists a K′ > 0 such that

|U(u)| < K′e−α′εu (A.25)

for all u � 0. It should be noted that α′ < 1 because of (35). Furthermore, if we choose σ so
small that

	λl < −α′ < −σ < 0, (A.26)

then we can write

α′ = α + σ (A.27)

using some 0 < α < 1. Combining (A.23) and (A.25), we obtain (A.22).

Appendix A.4. Existence of a solution

We define the space C of continuous mappings on [0, ∞] into Rn in the following way:

C = {b; |b(u)| < εηe−αεu, u � 0}. (A.28)

Define the metric on C by

ρ(b1, b2) = sup
u�0

|(b1(u) − b2(u))eαεu|, (A.29)

for b1, b2 ∈ C. Note that if b ∈ C, b(u) ∈ Nεη for all u � 0. Then according to (A.15), for
ξ > 0, there exists η > 0 such that

|H(u, b1(u)) − H(u, b2(u))| < (ξε + wε2)|b1(u) − b2(u)| < (ξε + wε2)ρ(b1, b2)e
−αεu

(A.30)

holds for b1, b2 ∈ C, u � 0.
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Next we introduce the following mapping ψ on C:

ψ(b)(u) = U(u)p +
∫ u

0
du′ U(u − u′)H(u′, b(u′)) −

∫ ∞

u

du′ T(u − u′)H(u′, b(u′)).

(A.31)

We have

|ψ(b1)(u) − ψ(b2)(u)| � K(ξε + εw2)ρ(b1, b2)

×
(∫ u

0
e−(α+σ)ε(u−u′)e−αεu′

du′ +
∫ ∞

u

eσ(u−u′)εe−αεu′
du′

)
, (A.32)

according to (A.22) and (A.30). Here, the first integration is evaluated as

∫ u

0
e−(α+σ)ε(u−u′)e−αεu′

du′ = 1

σε
(e−αεu − e−(α+σ)εu) <

e−αεu

σε
. (A.33)

The second integration is
∫ ∞

u

eσ(u−u′)εe−αεu′
du′ = 1

(α + σ)ε
e−αεu <

e−αεu

σε
. (A.34)

In this way, we obtain

ρ(ψ(b1), ψ(b2)) � 2K

σ
(ξ + εw)ρ(b1, b2), (A.35)

for b1, b2 ∈ C.
Now we show that ψ is a contraction map on C into itself if we choose ξ, η, ε and p such

that the following inequalities hold:

K

(
|p| + 2

σ
ε2|F (a∗)|

)
< 1

2εη, (A.36)

2K

σ
(ξ + εw) < 1

2 . (A.37)

It is easy to see that such a choice is in fact possible6.
When (A.36) and (A.37) hold, we can show that ψ maps C into itself. Let us recall (A.20).

If b ∈ C, then

|H(u, b(u))| < (εη(ξε + ε2w) + ε3|F (a∗)|)e−αεu. (A.38)

6 For example, we first fix ξ = ξ0 such that 0 < ξ0 < σ/(4K), which is realized by an appropriate choice of η(= η0)

according to (A.15). Next we choose ε = ε0 satisfying

ε0 < min

(
ση0

4K|F (a∗)| ,
1

w

( σ

4K
− ξ0

))
.

By construction, (ε0, ξ0) satisfies (A.37). Furthermore, choosing p such that

0 < |p| <
2ε0|F (a∗)|

σ

(
ση0

4K|F (a∗)| − ε0

)
,

we find that (A.36) holds.
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Combining this and the estimations (A.33) and (A.34), (A.31) yields

|ψ(b)(u)| � Ke−(α+σ)εu|p| + (εη(ξ + εw) + ε2|F (a∗)|)2K

σ
e−αεu

< K(|p| + 2K

σ
ε2|F (a∗)|)e−αεu + εη(ξ + εw)

2K

σ
e−αεu < εηe−αεu (A.39)

for all u � 0. In the last inequality, we have used (A.36) and (A.37). It shows that ψ(b) ∈ C.
Furthermore, (A.35) and (A.37) indicate that ψ is a contraction map.

Thus, existence b ∈ C of the solution

b = ψ(b) (A.40)

and its uniqueness follow from the fixed point theorem (see the textbook [11], for example).
Since b belongs to C, we find that there is a positive number J such that

|b(u)| < Je−αεu (A.41)

for u � 0.

Appendix B. Estimation of the remaining terms in (29)

According to (29) and (36)–(38), it is sufficient to show that

∣∣∣∣
∫ u

0
U(u − u′)(H(u′, b̃(u′)) − e−εuF̃ (c̃∗)) du′

∣∣∣∣ <

n−∑
l=0

G
(l)
3 (u)eλlεu, (B.1)

∣∣∣∣
∫ ∞

u

T(u − u′)H(u′, b̃(u′)) du′
∣∣∣∣ < Be−εu, (B.2)

for all u � 0, in order to complete the derivation of (40). Here B is a positive constant and
G

(l)
3 (u) is a polynomial whose degree is at most νl − 1.

Let us first show (B.1). According to (A.2), H̃ is written as

H̃(u, b̃(u)) = ṽ(b̃(u)) + e−εu(F̃ (c̃∗) + DF̃ (c̃∗)b̃(u) + f̃ (b̃(u))). (B.3)

Since Ṽ , F̃ ∈ C2(E)7, the reminders ṽ, f̃ also belong to C2(E). Using the Taylor theorem, we
find that there exists a number θ (0 � θ � 1) such that

ṽi(b̃) =
∑
jk

1

2

∂2ṽi

∂b̃j∂b̃k

(θb̃)b̃jb̃k (B.4)

holds. Employing the estimation (31) for b̃(u), we can show that for sufficiently large B1

|ṽ(b̃(u))| < B1e−2αεu. (B.5)

A similar estimation holds true for f̃ , i.e., for some B2 > 0,

|f̃ (b̃(u))| < B2e−2αεu. (B.6)

7 See footnote 2.
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If the assumption (39) holds, we can take

1
2 < α < 1. (B.7)

Furthermore, we choose α such that 2α �= −λlfor all l = 1, . . . , n− for later use. Combining
the condition (B.7) with (B.5) and (B.6), it follows that there is a number B3 > 0 such that

|H̃(u, b̃(u)) − e−εuF̃ (c̃∗)| < |ṽ(b̃(u))| + e−εu(|DF̃ (c̃∗)b̃(u)| + |f̃ (b̃(u))|)
< B1e−2αεu + |DF̃ (c̃∗)|e−(1+α)εu + B2e(−1−2α)εu < B3e−2αεu

(B.8)

for all u � 0. Since the same estimation holds for every component projected onto Wl, we
obtain

|U(u − u′)(H̃(u′, b̃(u′)) − e−εuF̃ (c̃∗))|

=
∣∣∣∣∣

n−∑
l=1

eλlε(u−u′)
νl−1∑
k=0

(ε(u − u′))kNk
l

k!
(H̃ (l)(u′, b̃(u′)) − e−εuF̃ (l)(c̃∗))

∣∣∣∣∣
< B4

n−∑
l=1

eλlε(u−u′)
νl−1∑
k=0

(ε(u − u′))k

k!
e−2αεu′

. (B.9)

Integrating both sides by u′ over [0, u], we obtain (B.1).
As for (B.2), we use (B.8). Then we have

|H̃(u′, b̃(u′))| < |F̃ (c̃∗)|e−εu′ + B3e−2αεu′
< Ce−εu′

(B.10)

for some C > 0 because we have set α > 1/2. Then the integral is easily estimated as

∣∣∣∣
∫ ∞

u

du′ T(u − u′)H̃(u′, b̃(u′))
∣∣∣∣ < KC

∫ ∞

u

du′ eσε(u−u′)e−εu′ = KC

(σ + 1)ε
e−εu. (B.11)

Thus we get (B.2).

References

[1] Wilson K G and Kogut J 1974 Phys. Rep. 12C 75
[2] Itoi C and Mukaida H 1999 Phys. Rev. E 60 3688
[3] Mukadia H 2004 Phys. Rev. E 70 017101
[4] Chen L-Y, Goldenfeld N and Oono Y 1996 Phys. Rev. E 54 376
[5] Bricmont J and Kupiainen A 1992 Commun. Math. Phys. 150 193

Bricmont J, Kupiainen A and Lin G 1994 Commun. Pure. Appl. Math. 47 893
[6] Amit D J, Goldschmidt Y Y and Grinstein G G 1980 J. Phys. A: Math. Gen. 13 585
[7] Xing X and Radzihovsky L 2003 Europhys. Lett. 61 769
[8] Perko L 2002 Differential Equations and Dynamical Systems 3rd edn (New York Springer)
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